
Quantum Information Processing (2019) 18:357
https://doi.org/10.1007/s11128-019-2469-1

Context-aware quantum simulation of a matrix stored in
quantummemory

Ammar Daskin1 · Teng Bian2,3,4 · Rongxin Xia2,3,4 · Sabre Kais2,3,4

Received: 2 April 2019 / Accepted: 9 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, a storage method and a context-aware circuit simulation idea are pre-
sented for the sum of block diagonal matrices. Using the design technique for a
generalized circuit for the Hamiltonian dynamics through the truncated series, we
generalize the idea to (0–1) matrices and discuss the generalization for the real matri-
ces. The presented circuit requires O(n) number of quantum gates and yields the
correct output with the success probability depending on the number of elements: For
matrices with poly(n), the success probability is 1/poly(n). Since the operations on
the circuit are controlled by the data itself, the circuit can be considered as a context-
aware computing gadget. In addition, it can be used in variational quantum eigensolver
and in the simulation of molecular Hamiltonians.

Keywords Quantum circuits · Circuit simulation of Hamiltonian · Context-aware
computing · Quantum memory

1 Introduction

A quantum algorithm can be described through matrix-vector transformations. The
number of two- and single-qubit quantum gates required to implement these transfor-
mations as a quantum circuit describes the computational complexity of the algorithm.
It is known that an N × N matrix that depends on N 2 independent parameters
requires O(N 2) quantum gates [1]. When the matrix is sparse with only polylog(N)

nonzero elements, then it is possible to design matrix specific quantum circuits with

B Ammar Daskin
adaskin25@gmail.com

1 Department of Computer Engineering, Istanbul Medeniyet University, Üsküdar, Istanbul, Turkey

2 Department of Chemistry, Purdue University, West Lafayette, IN, USA

3 Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA

4 Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-019-2469-1&domain=pdf
http://orcid.org/0000-0002-1497-5031

 357 Page 2 of 12 A. Daskin et al.

polylog(N) quantumgates. The common circuit design approach is towrite thematrix
H as a sum

∑
j H j ,where eiHj t should be easy to compute for any Hj , and approximate

exp(iHt) by using the Trotter formula for the exponentiation, i.e., (
∏

j exp(i Hj t/r)r .
This idea is used in previous works such as [2,3] to find the most efficient circuits for
sparse matrices.

Solutions of many problems relate to finding the lowest (or highest) eigenvalue in
magnitude and its associated eigenvector. This includes finding the ground state of
the Hamiltonian of a quantum system in quantum chemistry [4–9]. Recent methods
such as variational quantum eigensolver [10,11] and quantum signal processing [12]
have proved that the exponential eiHt is not needed to find the eigenpair of H. For
these methods, it is sufficient to find a direct circuit forH that can generateH |ψ〉 for
any quantum state |ψ〉 (example circuits [13,14]).

In this paper, we describe a storage method for (0–1) matrices on quantummemory
and show an efficient circuit design that loads the data from quantum memory as a
superpositioned state and generates the output H |ψ〉 for any H by using quantum
operations that are controlled by the data itself. When a system uses the context to
provide relevant information, it may be considered as a context-aware system [15].
Therefore, we believe this work will pave the way for quantum context-aware com-
puting. In terms of the computational complexity, the circuit uses only O(n) number
of quantum gates. The success probability of the method—as expected—scales with
the number of elements and is 1/poly(n) for the matrices with poly(n) number of
nonzero elements.

This paper is organized as follows: We explain the approach for (0–1) block diag-
onal matrices in Sect. 2. In Sect. 3, we generalize the idea to matrices with (0–1)
elements. The computational complexity and the success probability in the case of
sparse matrices are shown in Sect. 4. In Sect. 5, we explain how the quantum random-
access memory is employed and analyze the storage complexity for sparse matrices
with (0–1) elements. Section 6 briefly discusses how the idea generalizes to a matrix
in real space and how the circuit can be used with variational quantum eigensolver by
applying the circuit to find the ground state of the hydrogen molecule.

2 The approach for (0–1) block diagonal matrices

Assume that we want the circuit implementation of the following N × N matrix:

H =
∑

i

Qi (1)

where Qi is a block diagonal matrix defined as the direct sum of quantum gates: For
instance,wewill assumeQi = ⊕K

k σk withσk ∈ {X , Z ,−Z , X Z , Z X ,−I , I , Zero};
here Zero represents a 2×2 zero matrix and

⊕
is used for the direct sum of the matri-

ces. (It generates a block diagonal matrix.). We use a quantum state whose elements
encode the gate information of the matrices on the diagonal:

123

Context-aware quantum simulation of a matrix… Page 3 of 12 357

|gi 〉 = 1

η

K−1∑

k=0

|gik〉 |k〉 , (2)

where η is the normalization constant and |gik〉 is a vector of size eight from the
standard basis since there are eight different gates in the gate set. As an example, if

Qi =
⎛

⎝
Z

X
Zero

⎞

⎠ , (3)

then

|gi0〉 = |1〉 , |gi1〉 = |0〉 ,

|gi2〉 =
⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ , and η = 1√

2
. (4)

Here, |i〉 represents the i th vector in the standard basis. The zero vector for |gi2〉means
that it is not included in the summation given in (2). Notice that |gi 〉 involves n + 2
number of qubits: The last n − 1 qubits indicate the value k, and the first three qubits
are for the gate-type gik .

For an arbitrary given n-qubit state |ψ〉 and |gi 〉, consider the operation |β〉 =
Qi |ψ〉. The circuit in Fig. 1 can be used to produce 1/(η

√
8) |β〉 on the amplitudes

of the following states (see “Appendix A” for the validation of the circuit):

1

η
√
8

|000〉
N/2−1∑

j=0

(
β2 j |j〉k |j0〉system

+β2 j+1 |j〉k |j1〉system
)
, (5)

where |j〉 represents the j th vector in the basis. The coefficient 1/(η
√
8) comes from (2)

and the three Hadamard gates used in the circuit. Therefore, the overall success prob-
ability is || |β〉 /(η

√
8)||2.

Now let us generalize this to
∑

i Qi |ψ〉: First we add onemore register to represent
|i〉, and then, we give the following initial state to the circuit:

|g〉 = 1

ζ

∑

i,k

|i〉 |gik〉 |k〉 |ψ〉 , (6)

where ζ is the normalization constant so that all the nonzero elements in |i〉 |gik〉 |k〉 are
equal to 1

ζ
. To get the sum, we apply Hadamard gates to the register representing |i〉.

The resulting circuit is drawn in Fig. 2 (see “Appendix B” for the validation). If |gik〉s
are stored in the quantum memory, the circuit takes only O(n) time. This complexity
does not change much if we change the size of the basis to add more gates to the set.

123

 357 Page 4 of 12 A. Daskin et al.

Fig. 1 Quantum circuit for the
implementation of Qi |ψ〉. The
circuit includes 2n + 2 qubits
and implements the gate set
{X , Z ,−Z , X Z , Z X , −I , I , I }

Fig. 2 Quantum circuit for the
implementation of

∑
Qi |ψ〉

In this case, the size of the first register |i〉 determines the number of Hadamard gates
and the success probability. We can define the success probability in this general case
as:

Psuccess =
∥
∥
∥
∥

∑
i Qi |ψ〉
Cζ

∥
∥
∥
∥

2

, (7)

whereC is the coefficient determined by the number of Hadamard gates on the circuit.
If the number of Hadamard gates is close to n, then we obtain Psuccess ≈ 1/N which
is exponentially small in the number of qubits. However, in the sparse case one can
expect the number of Hadamards to be much smaller than n as shown in Sect. 4.

3 GeneralHwith 0–1 elements

In [16], a method is presented to write a general matrix as a sum of unitary matrices.
In this method, first without changing the location of any element, two indices i and
k are assigned to all 2 × 2 submatrices inside the matrix. For instance,

H =

⎛

⎜
⎜
⎝

H00 H10 H20 H30
H11 H01 H31 H21
H22 H32 H02 H12
H33 H23 H13 H03

⎞

⎟
⎟
⎠

8×8

. (8)

Then for i = 0, . . . , N/2−1, the block diagonal matrix Hi = ⊗N/2−1
k=0 is constructed.

Here, Hi includes one submatrix from each row and k corresponds to the row index of
the submatrix (a larger matrix given in (C1), notice the symmetries.). H is expressed

123

Context-aware quantum simulation of a matrix… Page 5 of 12 357

as a sum of Hi s in the following form:

H =
N/2∑

i=0

Hi Pi . (9)

Here Pi is a permutation matrix described by using the binary form i = (b0 . . . bn−1)2
as:

Pi =
⎛

⎝
n−1⊗

j=0

Xbj

⎞

⎠ ⊗ I . (10)

That means an X gate is put on qubit j if there is 1 in the binary representation of i .
This results in at most n − 1 single X gates on the circuit. Here note that while Hi

may not be a symmetric matrix, Hi Pi is one.
As in the previous section, we would like to have a circuit where based on the data

elements of Hi , a control register can choose the set of quantumgates.Wewill consider
sparse matrices with 0–1 elements and assume that any Hik is in the following form
(Note that since the following matrices form a basis, it automatically generalizes to
any Hik with 0–1 elements.):

G0 =
(
1 0
0 0

)

= I + Z

2

G1 =
(
0 0
1 0

)

= X + X Z

2

G2 =
(
0 1
0 0

)

= X + Z X

2

G3 =
(
0 0
0 1

)

= I − Z

2

Zero =
(
0 0
0 0

)

= Zero + Zero (11)

Using the above assumption, Hi can be defined as a sumof two block diagonalmatrices
similarly to Qi in (3): Hi = (Qia + Qib). Then, we rewrite H as:

H =
N/2−1∑

i=0

(Qia Pi + QibPi) . (12)

For simplicity, we will again assume Qia and Qib consist only the gates from the set
{X , Z ,−Z , X Z , Z X ,−I , I , Zero} and use the same encoding as in (4). ApplyingH
to a general quantum state |ψ〉 leads to a superpositioned state:

H |ψ〉 =
N/2−1∑

i=0

Hi Pi |ψ〉 (13)

123

 357 Page 6 of 12 A. Daskin et al.

Fig. 3 Quantum circuit
implementation of (13). The
circuit requires O(n) quantum
operations. The success
probability is given in (7) for the
general case and in (14) for the
sparse case

We can construct this superposition state by using a similar circuit to Fig. 2, but in this
case we have to control the X gates that implement Pi by the first register representing
|i〉. The resulting circuit is shown in Fig. 3.

4 SparseHwith poly(n) number of elements

For H with poly(n) number of 1s, the following two observations can be made:

1. The number of Hi s with only 0–1 elements cannot be more than poly(n). Oth-
erwise, the matrix has more than poly(n) elements or has elements with values
different than 0–1s. Therefore, we load only nonzero Hi s and adjust the control
bits of the X gates that implements Pi s. This requires only poly(log(n)) number
of qubits for representing |i〉 and Hadamard gates.

2. ζ cannot be more than poly(n). Otherwise, the matrix has more than poly(n)

number of nonzero elements.

Combining these two observations, we can conclude that

Psuccess =
∥
∥
∥
∥

∑
i Qi |ψ〉
poly(n)

∥
∥
∥
∥

2

. (14)

Therefore, if
∥
∥
∑

i Qi |ψ〉∥∥ is not too small, the circuit in Fig. 3 with O(n) number of
quantum operations is able to simulate any sparse matrix with poly(n) number of 1s
with O(1/poly(n)) success probability.

5 StoringH in quantummemory

A random-access memory (RAM) with 2n memory cells can be addressed by using an
n-bit input string. In the classical architectures, for a given address information in the
input register, a RAM outputs the data stored in the addressed memory cell. Similarly,
a quantum RAM model (qRAM) based on the bucket brigade addressing scheme
(a treelike structure) is proposed by Giovanetti et al. [17,18]. For a given address
information on the quantum register, qRAM returns the information on the addressed
memory cell onto the second quantum register. This process requires O(n) number of

123

Context-aware quantum simulation of a matrix… Page 7 of 12 357

memory call. (That is, the number of switches activated in the tree-structured address
scheme to reach the data. See [19] for the discussion on its robustness.). Therefore, we
can consider its complexity as O(n) per memory call. In contrast to classical RAM,
the input register in qRAM can be also a superposition of the addresses. In that case,
it returns the superposition of the addressed memory cells in O(n) time complexity,
i.e.,

∑

j

α j |j〉 |0〉 qRAM−−−→
∑

j

α j |j〉
∣
∣mj

〉
, (15)

where
∑

j α j |j〉 represents the superposition of the addresses and
∣
∣mj

〉
is the data

(either classical or quantum) in the j th memory cell. In this paper, we assume the data
are classically preprocessed in a way that matrices on the diagonal of Hi are stored as
a vector in qRAM. In particular, we store the vectorized form of Hik :

for Hik =
(
0 1
0 0

)

, |gik〉 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ = |01〉 . (16)

Here, the size of |gik〉 depends on the number of quantum gates that are defined in the
gate set. Since in the case of sparsematrices we consider the gate set {G0,G1,G2,G3}
defined in Eq. (11), the size of |gik〉 is four. It is important to note that in the physical
implementation, the indices of the nonzero Hiks and the related data |gik〉s can be
stored classically; however, the address register is a quantum register and prepared by
using the classically stored indices associated with the nonzero Hiks.

In addition to not storing and indexing Hikswithout anynonzero element; Hi swhich
do not have any nonzero Hik are also not stored or loaded. When H has poly(n)

number of nonzero elements, most of Hi s must be zero and there can be at most
poly(n) number of nonzero Hiks and Hi s (otherwiseHmust have more than poly(n)

number of nonzero elements). Therefore, loading the data ofH from qRAM requires
preparing a quantum input register of log(poly(n)) qubits into the equal superposition
state of classically stored poly(n) number of indices associated with the nonzero
elements. This can be done in O(n) time. Furthermore, a single memory call with this
superpositioned-address state is enough to load the data of H, which requires O(n)

number of activations as stated above. Therefore, the initial data load from qRAM
requires O(n) time complexity in total for the sparse matrices with poly(n) number
of nonzero elements.

Note that the analysis above mainly considers the sparse matrices. In the case of
densematrices with O(2n) elements, the complexity is governed by preparing an input
register that has n qubits, which requires O(2n) time complexity.

123

 357 Page 8 of 12 A. Daskin et al.

6 Discussion

6.1 Generalization forH ∈ R

Suppose we have

|gik〉 =

⎛

⎜
⎜
⎝

α0
α1
α2
α3

⎞

⎟
⎟
⎠ , (17)

where αs are the real-valued elements of a Hik . The quantum gates G0 . . .G3s given
in (11) form a computational basis. That means for |gik〉 above, it applies the superpo-
sitioned of the quantum gates with the probabilities defined by the elements of |gik〉.
Therefore, after the Hadamard gates on the chosen state, the correct normalized output
H |ψ〉 can still be obtained from Fig. 3 with the probability given in (7). However, in
this case, one needs to store quantum data on qRAM, which is not an easy task with
the near-term quantum technology.

6.2 Use in variational quantum eigensolver

Variational quantum eigensolver [10,11] is generally applied to the quantum chem-
istry problems that are represented by the electronic Hamiltonian in the second
quantization by transforming the Hamiltonian to the sum of Pauli operators, which
are the products of the Pauli spin matrices(e.g., [7,20,21]). Assume the electronic
Hamiltonian is H = ∑

i hiHi , where Hi is a Pauli operator and hi is the corre-
sponding coefficient. The algorithm starts with a state |ψ(θ)〉 defined by the vector
of parameters θ and tries to optimize these parameters by minimizing the outcome
〈ψ(θ)|H |ψ(θ)〉 = ∑

i 〈ψ(θ)| hiHi |ψ(θ)〉. Since eachHi is assumed to be a product
of the Pauli spin matrices, they are implemented by a separate quantum module effi-
ciently. Therefore, the algorithm involves a quantum part which computes the outcome
and a classical part responsible for the optimization by computing the sum of indi-
vidual outcomes and updating the parameters that forms |ψ〉. The circuit we describe
here can be directly used in the quantum part of the algorithm. Since each operator
hiHi can be written as ci Hi Pi , where ci is hi or −hi based on the form of Hi , Hi is
a block diagonal matrix and Pi is the permutation matrix. In that case, we can simply
get:

〈ψ(θ)|H |ψ(θ)〉 =
∑

i

〈ψ(θ)| ci Hi Pi |ψ(θ)〉 . (18)

This outcome of the circuit can be used in the classical optimization routine to update
the parameters of the input state. One can also run each 〈ψ(θ)| ci Hi Pi |ψ(θ)〉 on
separate modules and sum the outcomes in the classical subroutine as done in the
original quantum eigensolver.

As an example to show how to implement the modified VQE, we will take
hiHi = hi XYY Z . Since hi XYY Z can be rewritten as ci Hi Pi , in which Pi = XXX I ,
Hi = I Z Z Z and ci = −hi . Thus 〈ψ(θ)| hi XYY Z |ψ(θ)〉 = ci 〈ψ(θ)| Hi Pi |ψ(θ)〉.
We can first apply X gates to specific qubits to obtain Pi |ψ(θ)〉. Then, the context-

123

Context-aware quantum simulation of a matrix… Page 9 of 12 357

Fig. 4 The ground state energy for the H2 molecule as a function of internuclear distance R using the
modified VQE based on the contex aware algorithm

aware algorithm will implement the block diagonal matrix Hi and output the state
Hi Pi |ψ(θ)〉. By preparing another |ψ(θ)〉 and doing quantum fingerprinting [22]
using swap gate, we obtain 〈ψ(θ)| Hi Pi |ψ(θ)〉. Summing all the terms with coeffi-
cients ci gives us the energy of state |ψ(θ)〉. Then, we can use classical optimization
methods to update θ and finally get the minimum energy of the system. Figure 4 shows
the ground state energy curve of H2 obtained by the simulation based on this modified
VQE. In the simulation, the 4-qubit Hamiltonian of H2 is calculated by openfermion
package [23] using STO-3G basis set, and the hardware-efficient ansatz is prepared
by 3-layer pairwise design in [7].

7 Conclusion

In this paper, using an abstract indexing to indicate amatrix as a sumof permuted block
diagonal matrices, we have described a storage method for (0–1) diagonal matrices on
quantummemory and shown an efficient circuit design with O(n) number of quantum
gates: the circuit that loads the data from quantum memory as a superpositioned
state and generates the output H |ψ〉; the success probability is 1/poly(n) for H
with poly(n) number of nonzero elements. The quantum operations in the circuit
are controlled by the data itself. Therefore, this idea can be used for context-aware
quantum computing.

The circuit can be also employed with the known quantum algorithms for any
matrix-related problems. We have discussed how it can be used with variational quan-
tum eigensolver for the simulation of molecular Hamiltonians. As an example, we
have used the molecule H2 and computed the ground state energy curve, which is
in a complete agreement with the exact diagonalization results. Since any arbitrary

123

 357 Page 10 of 12 A. Daskin et al.

real matrix can be decomposed into block diagonal matrices by the described method,
this method may provide a new way to evolve quantum state by unitary/non-unitary
operators through quantum circuits.

Acknowledgements One of us, S.K, would like to acknowledge the partial support from Purdue Integrative
Data Science Initiative and the U.S. Department of Energy, Office of Basic Energy Sciences, under Award
Number DE-SC0019215.

Appendix A: Validation of the circuit in Fig. 1

The controlled gate set in the circuit has the following matrix form:
⎛

⎜
⎜
⎜
⎜
⎝

I⊗2n−2 ⊗ X
I⊗2n−2 ⊗ Z

. . .

I⊗2n−2 ⊗ I

⎞

⎟
⎟
⎟
⎟
⎠

(A1)

We can represent the whole circuit more concisely by using the direct sum ofmatrices:

(
H⊗3 ⊗ I⊗2n−1

)
⎛

⎝
N/2⊕

j=0

X ⊕
N/2⊕

j=0

Z ⊕
N/2⊕

j=0

−Z ⊕ · · ·
N/2⊕

j=0

I

⎞

⎠ (A2)

To illustrate the action of the circuit, we will use the example matrix Qi = Z ⊕ X Z
which leads to the following |gik〉 |k〉 s:

|gi0〉 |0〉 = |1〉 |0〉 and |gi1〉 |1〉 = |3〉 |1〉 . (A3)

Then, we form the following 6-qubit initial state:

|gi 〉 |ψ〉 = 1√
2

(|1〉 |0〉 |ψ〉 + |3〉 |1〉 |ψ〉) . (A4)

After applying the controlled gates (CG) to the initial state, we obtain:

CG |gi 〉 |ψ〉 = 1√
2

(|1〉 |0〉 (Z ⊗ Z) |ψ〉 + |3〉 |1〉 (X Z ⊗ X Z) |ψ〉) . (A5)

Applying the Hadamard gates to the first three qubits produces the following final
state:

1

4

(
(|000〉 − |001〉 + |010〉 − |011〉 + |100〉 − |101〉

+ |110〉 − |111〉) |0〉 (Z ⊗ Z) |ψ〉
+(|000〉 − |001〉 − |010〉 + |011〉 + |100〉 − |101〉

− |110〉 + |111〉) |1〉 (X Z ⊗ X Z) |ψ〉
)

. (A6)

Here, the states where the first three qubits are in |000〉 includes the expected output
which are:

1

4

(|000〉 |0〉 (Z ⊗ Z) |ψ〉 + |000〉 |1〉 (X Z ⊗ X Z) |ψ〉)
. (A7)

123

Context-aware quantum simulation of a matrix… Page 11 of 12 357

The equivalent of Qi |ψ〉 is produced on the amplitudes of the states:

{|000000〉 , |000001〉 , |000110〉 , |000111〉}. (A8)

Appendix B: Validations of the circuits in Figs. 2 and 3

In the circuit inFig. 2,wehave the superpositioned input state |g〉. Before theHadamard
gates on thefirst register of the circuit, for different |i〉on the outputwehavenormalized
Qi |ψ〉 on the same states as given in (A7) and (A8). That means for |0〉 on the first
register we have normalized Q0 |ψ〉 on the chosen states, and for |1〉 we have Q1 |ψ〉,
and so on. By applying the Hadamard gates to the first register, for |i〉 = |0〉, we
generate the normalized summation

∑
i Qi |ψ〉 on the same chosen states.

Figure 3 is just the generalization of Fig. 2 and acts the same way.

Appendix C: A larger Hamiltonian divided into submatrices

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H00 H10 H20 H30 H40 H50 H60 H70
H11 H01 H31 H21 H51 H41 H71 H61
H22 H32 H02 H12 H62 H72 H42 H52
H33 H23 H13 H03 H73 H63 H53 H43
H44 H54 H64 H70 H04 H14 H24 H34
H55 H45 H75 H61 H15 H05 H35 H25
H66 H76 H46 H52 H26 H36 H06 H16
H77 H67 H57 H43 H37 H27 H17 H07

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

16×16

. (C1)

References

1. Nielsen, M.A., Chuang, I.L.: QuantumComputation and Quantum Information. Cambridge University
Press, Cambridge (2010)

2. Childs, A.M., Kothari, R.: Simulating sparse Hamiltonians with star decompositions. Conference on
Quantum Computation. Communication, and Cryptography, pp. 94–103. Springer, Berlin (2010)

3. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision
for simulating sparse Hamiltonians. In: Forum of Mathematics, Sigma, vol. 5. Cambridge University
Press, Cambridge (2017)

4. Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.-H., Aspuru-Guzik, A.: Simulating chemistry
using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011)

5. Olson, J., Cao, Y., Romero, J., Johnson, P., Dallaire-Demers, P.-L., Sawaya, N., Narang, P., Kivlichan,
I., Wasielewski, M., Aspuru-Guzik, A.: Quantum information and computation for chemistry. arXiv
preprint arXiv:1706.05413 (2017)

6. Kais, S.: Quantum Information and Computation for Chemistry: Advances in Chemical Physics, vol.
154, p. 224109. Wiley, Hoboken (2014)

7. Bian, T., Murphy, D., Xia, R., Daskin, A., Kais, S.: Quantum computing methods for electronic states
of the water molecule. Mol. Phys. 117, 2069–2082 (2019)

8. Xia, R., Bian, T., Kais, S.: Electronic structure calculations and the ising Hamiltonian. J. Phys. Chem.
B 122, 3384–3395 (2017)

123

http://arxiv.org/abs/1706.05413

 357 Page 12 of 12 A. Daskin et al.

9. Xia, R., Kais, S.: Quantum machine learning for electronic structure calculations. Nat. Commun. 9,
4195 (2018)

10. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A.,
O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5,
4213 (2014)

11. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-
classical algorithms. New J. Phys. 18, 023023 (2016)

12. Low, G.H., Chuang, I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev.
Lett. 118, 010501 (2017)

13. Daskin, A., Grama, A., Kollias, G., Kais, S.: Universal programmable quantum circuit schemes to
emulate an operator. J. Chem. Phys. 137, 234112 (2012)

14. Daskin, A., Kais, S.: Direct application of the phase estimation algorithm to find the eigenvalues of
the Hamiltonians. Chem. Phys. 514, 87–94 (2018)

15. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better under-
standing of context and context-awareness. In: International Symposium on Handheld and Ubiquitous
Computing, pp. 304–307. Springer (1999)

16. Daskin, A., Kais, S.: A generalized circuit for the hamiltonian dynamics through the truncated series.
Quantum Inf. Process. 17, 328 (2018)

17. Giovannetti, V., Lloyd, S.,Maccone, L.: Quantum randomaccessmemory. Phys. Rev. Lett. 100, 160501
(2008)

18. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys.
Rev. A 78, 052310 (2008)

19. Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca,M., Srinivasan, P.V.: On the robustness
of bucket brigade quantum ram. New J. Phys. 17, 123010 (2015)

20. O’malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J.,
Roushan, P., Tranter, A., Ding, N., et al.: Scalable quantum simulation of molecular energies. Phys.
Rev. X 6, 031007 (2016)

21. Kandala,A.,Mezzacapo,A., Temme,K., Takita,M.,Brink,M.,Chow, J.M.,Gambetta, J.M.:Hardware-
efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242
(2017)

22. Buhrman, H., Cleve, R., Watrous, J., DeWolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902
(2001)

23. McClean, J.R., Kivlichan, I.D., Sung, K.J., Steiger, D.S., Cao, Y., Dai, C., Fried, E.S., Gidney, C.,
Gimby, B., Gokhale, P., et al.: Openfermion: the electronic structure package for quantum computers.
arXiv preprint arXiv:1710.07629 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1710.07629

	Context-aware quantum simulation of a matrix stored in quantum memory
	Abstract
	1 Introduction
	2 The approach for (0–1) block diagonal matrices
	3 General mathcalH with 0–1 elements
	4 Sparse mathcalH with poly(n) number of elements
	5 Storing mathcalH in quantum memory
	6 Discussion
	6.1 Generalization for mathcalHinR
	6.2 Use in variational quantum eigensolver

	7 Conclusion
	Acknowledgements
	Appendix A: Validation of the circuit in Fig. 1
	Appendix B: Validations of the circuits in Figs. 2 and 3
	Appendix C: A larger Hamiltonian divided into submatrices
	References

